
Developing Reactive Systems Using Statecharts

Simon Van Mierlo
University of Antwerpc-

Flanders Make
Belgium

simon.vanmierlo@uantwerpen.be

Axel Terfloth
itemis AG
Germany

terfloth@itemis.de

Hans Vangheluwe
University of Antwerp -

Flanders Make
Belgium

hans.vangheluwe@uantwerpen.be

16 September 2019

2

Time Table

09:00 – 10:30 Introduction, Yakindu set-up

10:30 – 11:00 Coffee Break

11:00 – 12:30 Tutorial: Statecharts Concepts + Exercises

12:30 – 14:00 Lunch

14:00 – 15:30 Tutorial: Statecharts Concepts + Exercises

15:30 – 16:00 Coffee Break

16:00 – 17:30 Tutorial: Advanced Concepts

3

Introduction

4

• Complexity: reactive (to events), timed, concurrent, behaviour

• In contrast to transformational systems, which take input and,
eventually, produce output

Reactive Systems

5

• Interaction with the environment: reactive to events

• Autonomous behaviour: timeouts + spontaneous
transitions

• System behaviour: modes (hierarchical) + concurrent units

• Use programming language + threads and timeouts (OS)?

Modelling Reactive Systems

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

“Nontrivial software written with threads, semaphores, and
mutexes are incomprehensible to humans”

6

Discrete-Event Abstraction

7

• All states are explicitly represented (unlike Petrinets, for example)

• Flat representation (no hierarchy)

• Does not scale well: becomes too large too quickly to be usable (by humans)

State Diagrams

8

event/state s0 s1 s2 s3 s4 s5 s6

5 s1, n s2, n s3, n s4, n s5, n s6, n s6, 5

10 s2, n s3, n s4, n s5, n s6, n s6, 5 s6, 10

25 s5, n s6, n s6, 5 s6, 10 S6, 15 s6, 20 s6, 25

O s0, n s1, n s2, n s3, n s4, n s5, n s0, orange
juice

R s0, n s1, n s2, n s3, n s4, n s5, n s0, apple
juice

Alternative Representation: Parnas Tables

9

Moore Machines

• Output only depends on current state.
λ: Q → O

• Input: 00 -> Output: 111

Mealy and Moore Machines

https://www.geeksforgeeks.org/mealy-and-moore-machines/

Mealy Machines

• Output depends current state and
current input. λ: Q x ∑ → O

• Input: 00 -> Output: 11

FSA: (Q, q0, ∑, O, δ, λ)

https://www.geeksforgeeks.org/mealy-and-moore-machines/

10

• Statecharts can be made turing-complete

-> data memory, control flow, branching

• Extends FSAs

-> borrows semantics from Mealy and Moore machines

FSAs: Expressiveness

https://en.wikipedia.org/wiki/Finite-state_machine

https://en.wikipedia.org/wiki/Finite-state_machine

11

Higraphs

Euler Diagrams

topological notions for set union, difference, intersection

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

X = {a, b, …, h}

a

b

c

d

e

fg

h

Unordered Cartesian Product

Hypergraphs

A = B x C

A
B C

topological notion (syntax): connectedness

Hyperedges: ⊆ 2X (undirected), ⊆ 2X ×2X (directed).

12

Higraphs

Euler Diagrams

Hypergraphs

Unordered Cartesian Product

+

+

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

15

• Visual (topological, not geometric) formalism

• Precisely defined syntax and semantics

• Many uses:

• Documentation (for human communication)

• Analysis (of behavioural properties)

• Simulation

• Code synthesis

• … and derived, such as testing, optimization, …

Statecharts

16

• Introduced by David Harel in 1987

• Notation based on higraphs = hypergraphs + Euler diagrams +
unordered cartesian product

• Semantics extend deterministic finite state automata with:

• Depth (Hierarchy)

• Orthogonality

• Broadcast Communication

• Time

• History

• Syntactic sugar, such as enter/exit actions

Statecharts History

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274

17

• Incorporated in UML: State Machines (1995)

• More recent: xUML for semantics of UML subset (2002)

• W3 Recommendation: State Chart XML (SCXML) (2015)
https://www.w3.org/TR/scxml/

• Standard: Precise Semantics for State Machines (2019)

https://www.omg.org/spec/PSSM/

Statecharts History

https://www.omg.org/spec/PSSM/

18

Statechart (Variants) Tools

https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm

https://www.eclipse.org/papyrus-rt/

https://www.itemis.com/en/yakindu/state-machine/

https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

https://www.mathworks.com/products/stateflow.html
ml

https://www.eclipse.org/etrice/

https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://www.eclipse.org/papyrus-rt/
https://www.itemis.com/en/yakindu/state-machine/
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody
https://www.mathworks.com/products/stateflow.html
https://www.eclipse.org/etrice/

19

Running Example

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

System

20

What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

• Autonomous (timed) behaviour
• Interrupt logic
• Orthogonal (traffic light/timer) behaviour

(Deployed) Statecharts
Model

“Interface”

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

System

plant
input

plant
output

21

Deployment (Simulation)

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

(Simulated) Plant

1 2

Environment
System

22

Deployment (Hardware)

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

(Physical) Plant

Environment

System

23

Workflow

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In
European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec. LNCS Volume 7916, pp 182-202, 2013.

24

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

• R6: time periods of different phases are configurable.

• R7: police can interrupt autonomous operation

• Result = blinking yellow light (on -> 1s, off -> 1s)

• R8: police can resume an interrupted traffic light

• Result = light which was on at time of interrupt is turned on again

• R9: traffic light can be switched on and off and restores its state

• R10: a timer displays the remaining time while the light is red or green;
this timer decreases and displays its value every second. The colour of the
timer reflects the colour of the traffic light.

Requirements

itemis © 2010-2019 - all rights reserved - 25

YAKINDU Statechart Tools

Statecharts made easy...

itemis © 2010-2019 - all rights reserved - 26

YAKINDU Statechart Tools provides an integrated
modeling environment for the specification and
development of reactive, event-driven systems

based on the concept of statecharts.

What are YAKINDU Statechart Tools?

Users from Trondheim to Christchurch

and from Hawaii to Fiji

27

Customers from different domains:

Automotive, Avionic, Medical, Automation, Academia …

I like YAKINDU Statechart Tools a lot, especially the fact

that it is simple and direct, and it is not burdened with

some of the more advanced, expensive and heavy features

of other professional statechart tools.

„

“
Professor David Harel – inventor of statecharts
Vice president Israel Academy of Sciences and Humanities

Academia

28

More than 300 universities are using YAKINDU Statechart Tools

in research and education

•Active cooperation in research projects for predevelopment of future features like

• Model checking

• Scenario-based modeling

• Variability

• …

Industry Users

29

After integrating YAKINDU Statechart Tools we could offer

the possibility to develop state machines by use of a

graphical notation – this makes it a lot easier for our users

to master complexity.

„

“
Abhik Dey
Product Owner ASCET Developer at ETAS GmbH

30

The Statecharts Language

31

States

being in a state

= state <<name>> is active

= the system is in configuration
<<name>>

initial state

exactly one per model

“entry point”

32

• Model the dynamics of the system:

• if

• the system is in state A

• and event is processed

• then

1. output_action is evaluated

2. and the new active state is B

Transitions

event(params) / output_action(params)

33

• Spontaneous

• Input Event

• After Event

Transitions: Events

event queue

event queue

<<when triggered>>: <<insert event>>
<<remove timer>>

event(params) / output_action(params)

34

Transitions: Raising Output Events

event(params) / output_action(params)

Syntax for output action:
^output_event

means “raise the event output_event (to the environment)”

itemis © 2010-2019 - all rights reserved - 35

The YAKINDU
Statechart Dialect

itemis © 2010-2019 - all rights reserved - 36

In YAKINDU transitions are reactions.

• reactions define an effect that is executed when a specified trigger occurs
and/or a guard condition becomes true

• a transitions effect always includes transition from the source state to the
target state.

The reaction syntax is:

• trigger: list of events

• guard: boolean expression (explained later)

• effect: some action that produce an effect (incl. state transition

• … all optional.

Reaction Syntax

trigger [guard] / effect

itemis © 2010-2019 - all rights reserved - 37

The following trigger types exist for transitions:

buttonPressed // named event triggers

after 2s // one shot time trigger

every x ms // periodic time trigger

always // pseudo trigger that is always active

oncycle // same as ‚always‘

else // pseudo trigger for choices

default // same as ‚else‘

Trigger can be a list of events:

buttonPressed, systemAlert, after 20 s <=> buttonPressed OR systemAlert OR after 20 s

Transition Trigger

trigger [guard] / effect

itemis © 2010-2019 - all rights reserved - 38

An transition effect includes:

1. The state transition

2. Zero or more actions (';' separated)

Actions can be:

raise event1 // raise events

x = 100 // variable assignment

doX(x, 10) // operation call

Transition Effect

trigger [guard] / effect

itemis © 2010-2019 - all rights reserved - 39

Declaring Named Events

YAKINDU SCT requires the declaration of events

// an incoming event
in event button_pressed
// an incoming event with payload
in event temperature_change : integer
// an outgoing event
out event halt_system

• events have visibility

• public : defined on interface

• private : defined internally

• public events have a direction

• in

• out

• events may have payload

40

Prepare Exercises

YAKINDU Statechart Tools
& workspace setup

itemis © 2010-2019 - all rights reserved - 41

1. Prerequisite: you need an installed Java SDK

2. Install YAKINDU SCT

1. Select the YAKINDU SCT archive for your OS on the stick and unzip it to any
location (Windows Programs folder strongly not recommended)

2. Alternatively download YAKINDU SCT from
https://www.itemis.com/en/yakindu/state-machine/

3. Unzip the MODELS_SC_TUTORIAL.zip to any folder

4. Start YAKINDU SCT and select <tutorial folder>/workspace as workspace location
when prompted.

-> YAKINDU SCT starts and you will see the
welcome screen.

Setup

https://www.itemis.com/en/yakindu/state-machine/

42

Exercise 1

Model a basic traffic light

43

Exercise 1 - Requirements

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

Environment(Simulated) Plant

<<observe>>

Your model here.

<<control>>

44

Exercise 1 - Solution

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

Environment(Simulated) Plant

<<observe>>

45

requirement modelling approach

R1: three differently coloured lights: red
(R), green (G), yellow (Y)

For each color a state is defined. Transitions that lead to a state
raise the proper out event which interacts with the plant.

R2: at most one light is on at any point in
time

The states are all contained in a single region and thus a
exclusive to each other.

R3: at system start-up, the red light is on
The entry node points to state Red and the entry transition
raises the event displayRed.

R4: cycles through red on, green on, and
yellow on

The transitions define this cycle.

R5: red is on for 60s, green is on for 55s,
yellow is on for 5s

Time events are specified on the transitions.

Exercise 1 - Solution

46

Data Store

47

Full System State

data store snapshot

= variables and their value

+

=
full system state

being in a state

= state <<name>> is active

= the system is in configuration
<<name>>

48

Full System State: Initialization

provide default value
for each variable

“initial snapshot”

Compare:

C++ initialization

implicit state

(program counter)

+ data store

initial state

exactly one per model

“entry point”

49

• Modelled by action code in some appropriate language

• Spontaneous

• Data Store Variable

• Parameter Variable

Transitions: Guards

event(params) [guard] / output_action(params)

e(p1, …, pn) [p1 == 5 && p3 == “a”]

[t1 == 5]

50

Transitions: Output Actions

• Assignment (to the non-modal part of
the state)

• by action code in some appropriate
language

• Output Event

^output_event(p1, p2, …, pn)

event(params) [guard] / output_action(params)

52

• Model the dynamics of the system:

• if

• the system is in state A

• and event is processed

• and guard evaluates to true

• then

1. output_action is evaluated

2. and the new active state is B

Transitions

event(params) [guard] / output_action(params)

itemis © 2010-2019 - all rights reserved - 53

if A is active

{

if (

((trigger specified AND occurred) OR (no trigger specified))

AND

((condition specified AND is true) OR (no condition specified))

)

{

exit A

execute exit action

execute transition action

execute entry action

enter B

}
}

Transition Execution

itemis © 2010-2019 - all rights reserved - 54

YAKINDU Variables

itemis © 2010-2019 - all rights reserved - 55

• In statecharts variables hold quantitative values.

• Variables may be accessible from ‚outside‘ the statechart

• Variables behave like you would expect

// a simple variable
var x : integer

// ... with initialization
var x : real = 4.2
var z : boolean = true
var my_var : integer = 0xff

Variables & Constants

• You can define constants

• Constants must have an initial value

const PI : real = 3.14

itemis © 2010-2019 - all rights reserved - 56

The following trigger types can be used within state and statechart
specifications:

buttonPressed // named event triggers

after 2s // one shot time trigger

every x ms // periodic time trigger

always // pseudo trigger that is always active

oncycle // same as ‚always‘

entry // pseudo trigger for entry actions

exit // pseudo trigger for exit actions

State and Statechart Trigger

itemis © 2010-2019 - all rights reserved - 57

• YAKINDU provides a 'Pluggable Type System'

• Type contributions can be provided by plugins

• Type checking is performed on expressions.

• Type inferrercalculates (infers) types of expressions and checks type
constraints.

• Type inferreris extendable in order to implement specific checks.

• Immediate user feedback while editing

Type System

itemis © 2010-2019 - all rights reserved - 58

Simple type system provides:

• boolean
• integer
• real
• string
• void

Complex type system support "deep integrations" with modeling and
programming languages (DSLs, Franca IDL, C, C++, Java, TypeScript):

• Custom types
• Structured types
• Enumerations
• Generics
• etc..

Type Systems

itemis © 2010-2019 - all rights reserved - 59

Internal state

• hold internal values not visible outside

Parametration

• makes properties publicly accessible

Data Flow

• 'in' and 'out' variables - in only read, out only written

Access external state

• externally declared variables can be in scope

Access objects

• variables can hold references to data & objects

Variable Usage Scenarios

itemis © 2010-2019 - all rights reserved - 60

operators

• assignment:
=, +=, -=, *=, /=, %=, <<=, >>=, &=,

^=, |=

• boolean:
&&, ||, !

• compare:
==, !=

• arithmetic:
+, -, *, /, %

• bit:
&, |, ^, >>, <<

• ternary: ()?:

literals

• decimal, hex & binary
integers

• floating point

• boolean (true, false)

• string

other
• active(statename)

checks if the specified state is
active

• valueof(event)
gets the payload of the event

• as
type cast

C-like Expressions

61

Exercise 2

Add data stores

62

Exercise 2 - Requirements

TrafficLight

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

<<behavior>>

Make sure that:
- the values of the variables reflect

which lights are on/off
- you use at least one conditional

transition

• R6: In the last 6 seconds of red being on, the light
prepares to go to green by blinking its yellow light (1s
on, 1s off) in addition to its red light being on.

• R7: The time period of the different phases should be
configurable.

Your model here.

63

Exercise 2: Solution

TrafficLight

<<behavior>>

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

• R6: In the last 6 seconds of red being on, the light
prepares to go to green by blinking its yellow light (1s
on, 1s off) in addition to its red light being on.

• R7: The time period of the different phases should be
configurable.

64

Statechart Execution

65

• A Run-To-Completion (RTC) step is an atomic execution step of a
state machine.

• It transforms the state machine from a valid state configuration into
the next valid state configuration.

• RTC steps are executed one after each other - they must not
interleave.

• New incoming events cannot interrupt the processing of the current
event and must be stored in an event queue

Run-To-Completion Step

66

Flat Statecharts: Simulation Algorithm (1)

itemis © 2010-2019 - all rights reserved - 67

YAKINDU strategy: first enabled transition is selected. If found no further
transitions are tested.

Enabled:

if (

((trigger specified AND occurred) OR (no trigger specified))

AND

((condition specified AND is true) OR (no condition specified))

)

First:

transitions are ordered – first according to this order

Yakindu: Selecting a Transition

68

Flat Statecharts: Simulation Algorithm (2)

69

Flat Statecharts: Simulation Algorithm (3)

70

Testing Statecharts

71

Testing Statecharts

Generator System Under Study Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

itemis © 2010-2019 - all rights reserved - 72

• X-unit testing framework for YAKINDU Statechart Tools

• Test-driven development of Statechart models

• Test generation for various platforms

• Executable in YAKINDU Statechart Tools

• Virtual Time

SCTUnit (beta)

itemis © 2010-2019 - all rights reserved - 73

• Has a unique name

• Has a reference to a statechart

• Contains one or more operation

Testclass

itemis © 2010-2019 - all rights reserved - 74

• Has a unique name

• A testsuite contains at least one reference to a testclass

Testsuite

itemis © 2010-2019 - all rights reserved - 75

• May have @Test or @Run annotation

• Has a unique name

• May have 0..n parameters

• Has a return type (standard is void)

• Contains 0..n statements

Operation

itemis © 2010-2019 - all rights reserved - 76

// entering / exiting the statechart

enter, exit
// raising an event

raise event : value

// proceeding time or cycles

proceed 2 cycle

proceed 200 ms

// asserting an expression, expression must evaluate to boolean

assert expression
// is a state active

active(someStatechart.someRegion.someState)

Expressions

itemis © 2010-2019 - all rights reserved - 77

SCTUnit allows to

• mock operations defined in the statechart model

• verify that an operation was called with certain values

// mocking the return value of an operation

mock mockOperation returns (20)

mock mockOperation(5) returns (30)

// verifying the call of an operation

assert called verifyOperation

assert called verifyOperation with (5, 10)

Mocking Statements

itemis © 2010-2019 - all rights reserved - 78

// if expression

if (x==5) {

doSomething()

} else {

doSomethingelse()

}

Control Structures

// while expression

while (x==5) {

doSomething()

}

79

Test-Driven Development

• Software development process, where software is developed driven by
tests

• Test-first-approach

• 3 steps you do repeatedly:

• writing a test

• implementing the logic

• refactoring
Writing test

Test failed

Implementing
Test
succeeded

Refactoring

80

Exercise 3

Testing Models

81

• Run and inspect prepared tests

• Fix and complete tests

• make them green

• 100% coverage

Exercise 3 – Unit testing statecharts

82

Generating Code (1)

itemis © 2010-2019 - all rights reserved - 83

Code Generation

• Code generators for C, C++, Java, Python, Swift, Typescript, SCXML

• Plain-code approach by default

• Very efficient code

• Easy integration of custom generators

itemis © 2010-2019 - all rights reserved - 84

• Has a generator ID

• Has a generator entry

• Each generator entry contains 1..n feature-configurations

• Each feature-configuration contains 1..n properties

Code Generator Model

85

Exercise 4

Generating Code

86

• Inspect the code generator model

• Inspect the generated code

• Integrate the state machine

• Run the UI

Exercise 4 – Integrate generated code with UI

87

Hierarchy

88

• A state can declare entry and exit actions.

• An entry action is executed whenever a state is entered (made
active).

• An exit action is executed whenever a state is exited (made inactive)

• Same expressiveness as transition actions:

Entry/Exit Actions

89

• Model the dynamics of the system:

• if

• the system is in state A

• and event is processed

• and guard evaluates to true

• then

1. the exit actions of state A are evaluated

2. and output_action is evaluated

3. and the enter actions of state B are evaluated

4. the new active state is B

Transitions

event(params) [guard] / output_action(params)

90

Entry/Exit Actions: Simulation Algorithm

91

• Statechart states can be hierarchically composed

• Each hierarchical state has exactly one initial state

• An active hierarchical state has exactly one active child (until leaf)

Hierarchy

FLATTEN

Semantics/Meaning?

92

Hiearchy: Modified Example

FLATTEN

Semantics/Meaning?

(unwanted) non-determinism!
determinism!

Statemate, Yakindu, …

Rhapsody, …

itemis © 2010-2019 - all rights reserved - 93

• Hierarchical states are an ideal mechanism for hiding complexity

• Parent states can implement common behavior for its substates

• Hierachical event processing reduces the number of transitions

• Refactoring support: group state into composite

Composite States

94

• Concept of effective target state

• Recursive: the effective target
state of a composite state is its
initial state

• Effective target state of initial
transition is Y/X/A

• Initialization:

1. Enter Y, execute enter action

2. Enter X, execute enter action

3. Enter A, execute enter action

Hierarchy: Initialization

95

• Assume Z/W/C is active and e is
processed.

• Semantics:

1. Find LCA, collect states to leave

2. Leave states up the hierarchy

3. Execute action act

4. Find effective target state set,
enter states down the hierarchy

Hierarchy: Transitions

RECURSIVE!

Effective target states:

96

Exercise 5

Model an interruptible traffic
light

97

• R7a: police can interrupt autonomous operation .
• R7b: Autonomous opreration can be interrupted during any pahse indicated by constant

red, yellow and green lights.
• R7c: In interruptetd mode the yellow light blinks with a constant frequency of 1 Hz. (on ->

0.5s, off 0.5s).
• R8a: Police can resume to regular autonomous operation.
• R8b: when regular operation is resumed the traffic light restarts with red (R) light on.

Exercise 5 - Requirements

98

Exercise 5: Solution

• R7a: police can interrupt autonomous operation .
• R7b: Autonomous opreration can be interrupted during any pahse indicated by constant

red, yellow and green lights.
• R7c: In interruptetd mode the yellow light blinks with a constant frequency of 1 Hz. (on ->

0.5s, off 0.5s).
• R8a: Police can resume to regular autonomous operation.
• R8b: when regular operation is resumed the traffic light restarts with red (R) light on.

99

Exercise 5 - Solution

requirement modelling approach

R6: police can interrupt autonomous operation.
An new incoming event police_interrupt triggers a transition
to a new state interrupted.

R6a: Autonomous opreration can be interrupted during any
pahse indicated by constant red, yellow and green lights.

The states Red, Green, and Yellow are grouped within a new
composite state normal. This state is the source state of the
transition to state interrupted and thus also applies to all
substates.

R7: In interruptetd mode the yellow light blinks with a
constant frequency of 1 Hz. (on -> 0.5s, off 0.5s).

State interrupted is a composite state with two
substates Yellow and Black. These switch the yellow light on
and off. Timed transitions between these states ensure
correct timing for blinking.

R8: Police can resume to regular autonomous operation.
A transition triggered by police_interrupt leads from
state interrupted to state normal.

R8a: When regular operation is resumed the traffic light
restarts with red (R) light on.

When activating state normal its substate Red is activated by
default.

100

History

101

History H shallow history H* deep history

• Assume Z/Y/X/B is active, and m is
processed

• Effective target state: E

• If h_s is processed

• Effective target state: Z/Y/D

• If h_d is processed

• Effective target state: Z/Y/X/B

RECURSIVE!

Effective target states:

H H*

itemis © 2010-2019 - all rights reserved - 102

• Entry- and exit-nodes define, how regions are entered or
exited.

• There are three kind of entry nodes (initial, shallow
history, deep history), but just one exit node.

Entries & Exits & Histories

itemis © 2010-2019 - all rights reserved - 103

• Named entry nodes work like „go to“.

• The transition A>B trigger by event1 will enter C.

• The transition A>B trigger by event2 will enter D through the named
entry ‚toB‘.

Named Entries

itemis © 2010-2019 - all rights reserved - 104

• Named exit nodes work like „come from“.

• The upper transition B>A will be taken on event1.

• The lower transition B>A will be taken on event2 through named
entry ‚error‘

Named Exits

105

Exercise 6

Model an interruptible traffic
light that restores its state

106

Exercise 6: Requirements

• R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.

107

Exercise 6: Solution

• R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.

108

Exercise 7

Model an interruptible traffic
light that restores its state and

can be switched on/off

109

Exercise 7: Requirements

• R9: The traffic light can be switched on and off.
• R9a: The traffic light is initially off.
• R9b: If the traffic light is off nocht light is on.
• R9c: After switching off and on again the traffic light must switch on the

previously activated light.

Add another hierarchy level that supports switching on and off the
coomplete traffic light. Go into detail with shallow and deep histories.

110

Exercise 7: Solution

111

Exercise 7: Alternative Solution

112

Orthogonality

113

Orthogonality

CARTESIAN PRODUCT

Semantics/Meaning?

RECURSIVE!

Effective target states:

H H*

114

Parallel (In)Dependence

115

Parallel (In)Dependence

116

Parallel (In)Dependence

117

Input Segment: nmnn

Orthogonality: Communication

• Components can communicate:

• raising local events:

^’<<event name>>

• INSTATE macro

INSTATE(<<state location>>)

118

Simulation Algorithm

119

Conditional Transitions

• getEffectiveTargetStates(): select one true-branch

• Always an “else” branch required!

• Equivalent (in this case) to two transitions:

• A – e[a > 2] -> C

• A – e[a <= 2] -> B

120

Exercise 8

Add a timer to the traffic light

121

Exercise 8: Requirements

• R10a: A timer displays the remaining time while the light is red or green
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.

TrafficLight
- timer: int

In this exercise a timer must be modeled. It introduces using orthogonal
regions.

122

Exercise 8: Solution TrafficLight
- timer: int

• R10a: A timer displays the remaining time while the light is red or green
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.

123

Solution 8
requirement modelling approach

R10: a timer displays the remaining time while the light is red
or green

The timer is defined in a second region within state on.

R10a: This timer decreases and displays its value every
second.

An internal variable for the counter is introduced. Wehn
switching e traffic light phase the counter value is set to the
time period of the phase. Additionally the local
evemts resetTimer, enableTimer, and disableTimer are used
to synchronize traffic light phase switches with the timer.

R10b: The colour of the timer reflects the colour of the traffic
light.

When the timer is enabled it checks the active traffic light
phase state using active() function.

124

Code Generation

itemis © 2010-2019 - all rights reserved - 125

Code Generation

• Code generators for C, C++, Java, Python, Swift, Typescript, SCXML

• Plain-code approach by default

• Very efficient code

• Easy integration of custom generators

126

• Various different approaches for implementing a state
machine (switch / case, state transition table, state
pattern)

• Which one is the best depends on

• Runtime requirements

• ROM and RAM memory

• Debug capabilities

• Clarity and maintainability

Code Generation

127

• Each state corresponds to one case

• Each case executes state-specific

statements and state transitions

Switch / Case

128

• Specifies the state machine purely declaratively.

• One of the dimensions indicates current states, while the
other indicates events.

State Transition Table

129

• Object-oriented implementation, behavioural design
pattern

• Used by several frameworks like Spring Statemachine,
Boost MSM or Qt State Machine Framework

• Each State becomes one class

• All classes derive from a

common interface

State Pattern

130

Code Generation

Fast Memory
efficient

easy to
debug

Easy to
understand

Switch / Case

State Transition
Table

State Pattern

very simplified illustration

SCT

itemis © 2010-2019 - all rights reserved - 131

• Has a generator ID

• Has a generator entry

• Each generator entry contains 1..n feature-configurations

• Each feature-configuration contains 1..n properties

Code Generator Model

132

Generated Code

Files

➢ 8 files
➢ 1311 lines of code
➢ 302 manual (UI) code

Sample

Interface

Runner

Generator

Setup Code
(Excerpt)

134

Deployed Application (Scaled Real-Time)

135

Deploying onto Hardware

Interface:
• pinMode(pin_nr, mode)
• digitalWrite(pin_nr, {0, 1})
• digitalRead(pin_nr): {0, 1}

136

Deploying onto Hardware

Runner

Deployed Application

Button Code

Generator

137

Semantic Choices

138

Semantic Choices

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

enabled events: [inc_one, inc_two]

139

• A “big step” takes the system from one “quiescent state” to the next.

• A “small step” takes the system from one “snapshot” to the next
(execution of a set of enabled transitions).

• A “combo step” groups multiple small steps.

Big Step, Small Step

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

140

Semantic Options

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

141

concurrency: single

event lifeline: next combo step

assignment: RHS small step

-> <{t1}, {t3}, {t5}> and

<{t3}, {t1}, {t5}>

event lifeline: present in remainder

-> <{t1}, {t5}, {t3}> becomes possible

Revisiting the Example

enabled events: [inc_one, inc_two]

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

142

Event Lifeline

142

143

Rhapsody Statemate (Default) SCCD

Big Step Maximality Take Many Take Many Take Many

Internal Event Lifeline Queue Next Combo Step Queue

Input Event Lifeline First Combo Step First Combo Step First Combo Step

Priority Source-Child Source-Parent Source-Parent

Concurrency Single Single Single

Semantic Options: Examples

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

itemis © 2010-2019 - all rights reserved - 144

Child-first vs Parent-first
Event-driven vs Cycle-based

itemis © 2010-2019 - all rights reserved - 145

In which order are transitions evaluated in a HSM?

Composite States Execution

raise e raise e

Child-first execution tries to take

transition bottom up

Parent-first execution tries to take

transitions top down

Child transitions overwrite parent

behavior

Parent transitions shadow child

behavior

itemis © 2010-2019 - all rights reserved - 146

The behavior of state machines are executed in single
‘run-to-completion’ steps.

Event-driven vs. Cycle-based

Cycle-based execution runs RTC steps

isochronously.

Event-driven execution runs a single RTC step

for each incoming event

Execution depends on events

One event visible in RTC step

T
im

e

event 1 rtcs 1

event 2 rtcs 2

event 6 rtcs
6

event 5 rtcs 4
rtcs 5

event 4

event 3 rtcs 3

T
im

e

event 1

event 2

event 6

event 5event 4

event 3

rtcs 1

rtcs 2

rtcs
3

rtcs 4

rtcs 5

rtcs
6

Execution is independent of events

‘guard-driven’ transitions possible: [X==10]

0..n events visible in RTC step

itemis © 2010-2019 - all rights reserved - 147

• multi-step RTC in event-driven execution

• all internal & in events raised within a
RTC are processed

• each in event is processed by a single
step which are composed to a RTC step

• makes use of event queues: in & internal

• internal event have higher priority than
in events

Event-driven: event queuing

ijinternal event queue:

internal event queue:

jinternal event queue:

internal event queue:

raise e

process i

process j

148

Composition

149

• Composition of multiple Statechart models

• Instantiation

• Communication

• Semantics

• Often solved in code…

Composition of Statecharts

150

Composition Example

151

Dynamic Structure: SCCD

StatechartsDesign? + ???

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure

• Dynamic

• Hierarchical

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure

• Dynamic

• Hierarchical

Coordination/Communication/Dynamic Structure often
implemented in code...

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In
3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

152

SCCD: Conformance

153

Communication: Event Scopes

154

SCCD Compiler

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans

Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd Workshop on

Engineering Interactive Systems with SCXML, part of EICS 2016, 2016

155

https://msdl.uantwerpen.be/documentation/SCCD/

SCCD

https://msdl.uantwerpen.be/documentation/SCCD/

156

• Model the behaviour of complex, timed, reactive, autonomous
systems

• “What” instead of “How” (= implemented by Statecharts
compiler)

• Abstractions:

• States (composite, orthogonal)

• Transitions

• Timeouts

• Events

• Tool support:

• Yakindu

• SCCD

Recap

